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Abstract. Learning when and how to generalize knowledge from past experi-
ence to novel circumstances is a challenging problem many agents face. In an-
imals, this generalization can be caused by mediated conditioning—when two
stimuli gain a relationship through the mediation of a third stimulus. For exam-
ple, in sensory preconditioning, if a light is always followed by a tone, and that
tone is later paired with a shock, the light will come to elicit a fear reaction, even
though the light was never directly paired with shock. In this paper, we present
a computational model of mediated conditioning based on reinforcement learn-
ing with predictive representations. In the model, animals learn to predict future
observations through the temporal-difference algorithm. These predictions are
generated using both current observations and other predictions. The model was
successfully applied to a range of animal learning phenomena, including sensory
preconditioning, acquired equivalence, and mediated aversion. We suggest that
animals and humans are fruitfully understood as representing their world as a set
of chained predictions and propose that generalization in artificial agents may
benefit from a similar approach.

The texture of our experience is often dotted by aversions and affinities that are only
indirectly related to rewarding or punishing outcomes. For example, if I have a near-
death experience in an ambulance on the way to the hospital, I am likely to shudder
next time I hear a siren go by, even if the ambulance was not playing its siren during my
traumatic episode. Or if I get really sick at a restaurant before ordering, I will certainly
think twice about eating their food in the near future. In these two examples, stimuli that
were never directly experienced in the offending situations still gain some of the residual
response that memory of the initial situation provokes. In the animal learning literature,
this indirect learning has been termed mediated conditioning and repeatedly reproduced
in the laboratory with notable instances including sensory preconditioning [1,2], as in
the ambulance example, acquired equivalence [3,4], and mediated aversion [5,6], as
in the restaurant example. Generalization between stimuli based on their experienced
history seems prima facie like a valuable asset to an animal or human (or animat) facing
novel stimuli or situations and may even form part of the basis for categorization and
conceptual knowledge [7].

M. Asada et al. (Eds.): SAB 2008, LNAI 5040, pp. 342–351, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Learning to Generalize through Predictive Representations 343

This learned generalization hints at a larger puzzle that has troubled researchers in
both machine learning and cognitive science: When should what you learn in one sit-
uation generalize to what you do in another? Generalization is a cornerstone of adap-
tive behavior that allows agents to take advantage of previous experience beyond the
particulars of the original learning context. In the psychological literature, most stud-
ies of generalization have focussed on how responding generalizes amongst physically
similar stimuli (e.g., tones of different frequencies). Mediated conditioning, however,
presents an instance whereby long-term equivalences can be established between physi-
cally distinct stimuli, merely because of the animal’s experience with the consequences,
antecedents, and associates of those stimuli [4]. In this paper, we propose that the com-
putational formalism of predictive representations [8,9,10] from reinforcement learning
provides an efficient and effective mechanism for the mediated conditioning exhibited
by many animals and humans. In this predictive representation (PR) approach to adap-
tive learning, stimuli are represented as the constellation of predicted future observa-
tions, rather than as composites of their physical properties. We leverage this idea to
develop a real-time PR model and show how this reinfrocement-learning model ex-
plains the learned generalization observed in mediated conditioning experiments.

1 Predictive Representation Model

The key insight behind our model is that stimuli are represented as a collection of
chained predictions about future observations [9]. This predictive representation for
a stimulus implies that generalization will occur readily between stimuli that share sim-
ilar predictions about the future—in a strong parallel to the manner that generalization
occurs most readily between stimuli that share physical properties. These PRs play a
similar role to the images or associatively activated representations in other theories of
animal conditioning [4,6,11,12].

Figure 1 presents a schematic of the PR model, illustrating how these representations
fit into the full learning scheme. Prediction generation in the model is a two-step pro-
cess: On a given time step, the observations (stimuli) are first used to generate interim
predictions for every potential stimulus. These interim predictions are then combined
with the same initial observations to generate a new set of final predictions for that time
step. These final predictions determine behavior, so, for example, in a simple learning
task where a light is followed by a tone and then by food, the light would lead to a
prediction of the tone which would lead to a prediction of the food. As a result, after
learning, the light would also (indirectly) lead to a (weaker) prediction of the food and
thereby elicit some of the associated conditioned responding.

We approach these tasks as a reinforcement-learning prediction problem, except that
we calculate a separate value function for every stimulus—not only rewards. More for-
mally, on every time step t, a value function Vt is computed for every potential obser-
vation as a semi-linear function of the vector xt of the observation/prediction values xi

t

and the vector wt of the learned weights wi
t:
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where the squashing function, σ(x) = 1
1+e−x , is used to keep the value of V between

0 and 1. Half the components of the vector xt are binary, indicating whether a partic-
ular stimulus was present on that time step (1) or not (0). Such a simplification is not
strictly necessary, and real-valued noisy observations are surely possible, but not con-
sidered here for ease of exposition. The other half of the components are real-valued
elements that correspond to predictions (see Fig. 1). The key to our model is that this
computation is performed twice on each time step. The first iteration uses only the bi-
nary observations (with all predictions set to 0) to calculate an interim prediction. On
the second iteration, this interim prediction becomes part of the stimulus representation
and is used to generate the final prediction that is compared to future experience.

Learning in the PR model occurs on the ensuing time step when new observations
are encountered, through the temporal-difference (TD) learning algorithm [10,13]. With
this learning rule, an error δt is formed for each potential outcome, which is the differ-
ence between the current prediction and the sum of the new observations and resultant
new predictions (as discounted by γ):

δt = xt+1 + γṼt+1 − Vt . (2)

Note that Ṽt+1 is the prediction as calculated using the vector of the new observations
and predictions, xt+1, and the weight vector before being updated, wt, through the
same two-step process described above. The discount factor, γ, determines the tem-
poral horizon of the prediction. A low γ makes the model short-sighted, focusing the

Representation

PredictionsStimuli

+

Update

Fig. 1. Schematic of the PR Model. Observations (blue circles) at one time step are first used
to generate interim predictions (boxed green clouds) for every stimulus. The same observations
are then combined with these interim predictions to generate the final predictions (larger green
clouds). Finally, on the next time step, the new observations and resultant new predictions are
combined to update (red arrow) the weights based on the discrepancy between the predictions
from the previous time step and these observed outcomes.
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prediction on the near future; a higher γ extends the temporal window which the model
is trying to predict.

The prediction calculation is updated on every time step by changing each weight,
wi, according to the TD error for that potential outcome:

wi
t+1 = wi

t + αδtx
i
t (3)

where α is a step-size parameter that influences the learning rate. In the model, events
that have high salience, such as shocks, have a large step size, whereas less salient
events, such as tones and lights, have a lower step size (and thus learning rate). For
simplicity, we chose to only update the weights from the second iteration and force
the weights in the first iteration to be identical to the corresponding weights in the
second iteration. Other versions of this PR model with deeper (multi-layer or recurrent)
predictions or with multiple cascading or independent learning updates are certainly
possible and may even capture further empirical phenomena not considered here.

An important element of the PR model is that all experimental situations are mod-
eled as real-time. In previous models of mediated conditioning and related phenom-
ena [12,15], the flow of experience was often divided into discrete trials and punctate
events—a structure which is not immediately apparent in the real world. The PR model
allows stimuli to exist for multiple time steps, thereby predicting the continuation of
themselves, a feature that is vital in explaining sensory preconditioning and mediated
aversion (see Tables 2 and 3).

2 Results

We demonstrate successful performance of the PR model on three animal learning tasks
that seem to involve mediated conditioning: acquired equivalence [3], sensory precon-
ditioning [2], and mediated aversion [5]. For each of these experiments, we simulated
the PR model with 100 trials in the first stage, 3 trials in the second stage, and a sin-
gle test trial in the final stage. Sensory stimuli all lasted for 15 time steps, while food
reward, shock, and illness lasted 3 time steps; an inter-trial interval of 60 time steps
separated trials. In all simulations, the discount factor γ was .98, and the step size α
was .4 for shock and illness, .3 for food reward, and .05 for other stimuli. Weights were
initialized to 0 and capped at 3.

2.1 Application: Acquired Equivalence

When two stimuli are repeatedly followed by the same outcome, they often come to be
treated more similarly in the future; that is, these stimuli acquire an equivalence rela-
tion [4,16]. For example, Honey and Hall [3] presented rats with three different stimuli
(A, B, and C): A and B were always followed by food reward (f) while C was never
rewarded (see upper part of Table 1). Rats then received parings of stimulus A with an
electric shock (sh). When subsequently tested with stimuli B and C, rats showed sig-
nificantly greater conditioned fear to stimulus B, which shared a common history with
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Table 1. Experimental details and model interpretation of the acquired equivalence experiment
from Honey and Hall [3]. Each column is a different stage of the experiment. A, B, and C are
different sounds; f = food; sh = shock; pr = prediction.

Stage 1 Stage 2 Test Result
Experiment: Honey and Hall [3]
A→f A→sh B B > C
B→f C
C

PR Model Explanation:
A→pr(f) A→pr(f)→sh B→pr(f) B→pr(sh)

B→pr(f) Therefore: & pr(f)→pr(sh)
A→pr(sh)
pr(f)→pr(sh)

shocked stimulus A. This transfer of conditioned fear to the stimulus that shared a train-
ing history with the shocked sound is the hallmark of an acquired equivalence relation-
ship. This acquired equivalence by common consequences has also been demonstrated
in pigeons [14] and humans [7,17].

Figure 2 presents simulation results from the PR model on this acquired equivalence
task. As with animals, the model produced a greater prediction of shock (equivalent
to more conditioned fear) with the stimulus (B) that shared a training history with the
shocked stimulus (A). The lower part of Table 1 gives an intuitive account of how our
model yields these results. After the first stage, both A and B produce a prediction
of food. In the second stage of training, A produces a prediction of food, which is
followed by shock. Thus, A produces a prediction of shock, and, here is the key point,
the prediction of food also produces a prediction of shock. Finally, in the third stage, B
still produces a prediction of food, which, in turn, produces a prediction of shock. This
indirect prediction of shock is the basis of the acquired equivalence effect (and other
forms of mediated conditioning) in our PR model.
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Fig. 2. PR model simulation results (left) and empirical data (right) from an acquired equivalence
experiment. Data are re-plotted from Honey and Hall [3]. Stimulus B shared a training history
with the shocked stimulus, while stimulus C did not.
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2.2 Application: Sensory Preconditioning

Sensory preconditioning is another experimental situation wherein one stimulus gains
an association with reward through the mediation of a second stimulus [1,2]. The upper
portion of Table 2 displays the experimental design for a typical sensory precondition-
ing procedure. Animals are first trained with pairings of two previously neutral stimuli
(A, B) as well as a third, unpaired stimulus (C). In the second stage, one of the paired
stimuli (B) is then followed by a mild shock (sh). Finally, in the test stage, the other
two stimuli are presented alone, and animals display greater conditioned fear to the
paired stimulus (A) than the unpaired stimulus (C). The link established between B and
A by their training history (in Stage 1) results in greater subsequent generalization be-
tween the two stimuli. This effect can be further augmented by presenting the stimuli
simultaneously rather than sequentially in Stage 1 (bracketed conditions in Table 2).

Figure 3 displays the empirical data (right) and corresponding simulation results
(left) from the real-time PR model in a sensory preconditioning procedure. As with real
animals, in the model, sensory preconditioning results in greater generalization to the
paired stimulus (A) from the first stage, most markedly for the simultaneous training
case [2]. The lower portion of Table 2 schematizes how the PR model explains this
generalized responding to stimulus A in the test stage. After the first stage of training,
stimulus A produces a prediction of stimulus B. Because stimuli last for multiple time
steps in the real-time PR model, all stimuli also learn to produce self-predictions. In
the second stage, stimulus B produces a prediction of itself, so both the stimulus and
its prediction are followed by the shock. As a result, both B and the prediction of B
lead to predictions of shock. In the final, test stage, stimulus A leads to a prediction of
B, which leads to a prediction of shock and the associated conditioned response. The
simultaneous case shows greater sensory preconditioning than the sequential version in
the PR model because, in the first stage, in the simultaneous case, the model additionally
learns that stimulus B predicts stimulus A (bracketed value in Table 2). This additional

Table 2. Experimental details and model interpretation for a sensory preconditioning experiment.
Each column is a different stage of the experiment. For clarity, only predictions directly pertinent
to the explanation of the primary effect are included. Bracketed items refer to the simultaneous
version of the task. A, B, and C are different stimuli; sh = shock; pr = prediction.

Stage 1 Stage 2 Test Result
Experiment: Rescorla [2]
A→B [AB] B→sh A [A] > A > C
C C

PR Model Explanation:
A→pr(A),pr(B) B→pr(B)→sh A→pr(A),pr(B) A→pr(sh)

B→pr(B),[pr(A)] [B→pr(A)→sh] & pr(B)→pr(sh) [A→pr(sh)]
Therefore: [& pr(A)→pr(sh)]

B→pr(sh)
pr(B)→pr(sh)
[pr(A)→pr(sh)]
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Fig. 3. PR model simulation results (left) and empirical data (right) from a sensory precondition-
ing experiment. Data are re-plotted from Figure 4 in Rescorla [2] as degree of response suppres-
sion. SIM = simultaneous; SEQ = sequential; CON = control.

prediction results in the prediction of A directly preceding shock in Stage 2, leading to
greater generalization in Stage 3 because of the self-prediction of stimulus A.

2.3 Application: Mediated Aversion

A final set of empirical phenomena that nicely illuminate properties of this PR model are
the series of mediated aversion experiments [5,6]. Table 3 shows the design for a typical
experiment: Animals are first trained with 2 neutral stimuli (A, B) each paired with one
of 2 different foods/flavours (f1, f2). In the second stage, animals are presented one of
the two stimuli followed by injection with lithium chloride (LiCl), an illness-inducing
agent. On the final, test stage, animals are presented with the 2 foods/flavours and will
typically preferentially eat from the food whose associate was not paired with illness in
the second stage.

Table 3. Experimental details and PR model interpretation for a mediated aversion experiment.
Each column is a different stage of the experiment. For clarity, only predictions directly pertinent
to the explanation of the primary effect are included. A, B = stimuli; f1, f2 = foods/flavours; G1,
G2 = 2 groups of animals; pr = prediction; LiCl = Lithium Chloride, an illness-inducing agent.

Stage 1 Stage 2 Test Result
Experiment: Holland [5]
A→f1 G1: A→LiCl f1 G1>G2
B→f2 & G2: B→LiCl

PR Model Explanation:
A→pr(A),pr(f1) A→pr(f1)→LiCl f1→pr(f1) f1→pr(LiCl)

f1→pr(f1) Therefore: & pr(f1)→pr(LiCl)
A→pr(LiCl)
pr(f1)→pr(LiCl)
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Fig. 4. PR model simulation results (left) and empirical data (right) from a mediated aversion
experiment. Data are re-plotted from Figure 1 in Holland [5] as percent decrease in consumption
of food f1 for the groups that had the same food (G1) or a different food indirectly devalued (G2).

Figure 4 shows how the PR model effectively captures the key result: In both the data
and simulations, the group that had food f1 indirectly devalued showed a much greater
prediction of illness than the second group. As sketched out in the lower part of Table 3,
the PR model learns that stimulus A leads to a prediction of food f1 in the first stage.
As a result, in the second stage, both stimulus A and the prediction of food f1 precede
(and learn to produce predictions of) illness (LiCl administration). Finally, in the final
test phase, food f1 leads to a prediction of itself which leads to a prediction of illness
and the observed food aversion. Once again, self-prediction is an important component
of the explanation, but this time in a different guise than with sensory preconditioning.
In sensory preconditioning, self-prediction is the important feature in the second phase
when stimulus B’s self-prediction leads to the prediction of B producing a prediction
of food (cf. Table 2). In the mediated aversion experiment, the crucial self-prediction
occurs in the final phase when food predicts itself, leading to a prediction of illness
(cf. Table 3).

3 Conclusions

In this paper, we have shown how mediated conditioning can be effectively modeled
with our real-time PR network model. The PR model conceives of humans and ani-
mals as generating a network of chained predictions of future observations, which, in
some ways, cashes out the “image” or “representation” of earlier theories of condition-
ing [4,6,11]. The selected empirical examples—acquired equivalence, sensory precon-
ditioning, and mediated aversion—each illustrate additional properties of the model in
explaining this form of learned generalization.

In their neural network model, Gluck and Myers [12] also address many of the same
empirical phenomena. They suggest that redundancy compression and predictive dif-
ferentiation are the two functions largely responsible for the increased generalization
observed in mediated conditioning experiments. Here, we propose an alternate compu-
tational account, based on the notion that stimuli are represented as the chained pre-
dictions of all future observations. Similarities in this predictive space produce learned
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generalization between stimuli. In addition, the real-time dynamics of our PR model
proffers novel explanations for more phenomena, including the difference between si-
multaneous and successive sensory preconditioning (see Fig. 3). Our model also bears
some similarity to Sutton’s TD Models [10], which allow artificial agents to incremen-
tally learn a full-world model for better planning.

Where in the brain might all these iterative predictions be computed? One possibility
is suggested from the few studies that have examined lesion effects on these tasks. We
know that acquired equivalence and sensory preconditioning are both dependent on the
hippocampus and the surrounding entorhinal and perirhinal cortices [12,18,19,20,21].
Moreover, humans with hippocampal atrophy show deficits in the transfer (general-
ization) stage of an acquired equivalence task [17]. These results, taken together, hint
that the medial temporal areas might be responsible for creating new predictive repre-
sentations for use by reinforcement learning systems elsewhere in the brain (e.g., basal
ganglia; see [22]). These predictive representations could also provide a unifying frame-
work for knowledge creation [23], including spatial learning and object memory, two
of the more common processes attributed to the hippocampus and perirhinal cortex,
respectively.

In conditioning, animals clearly learn more than a simple association between a neu-
tral cue and a rewarding stimulus. They learn a panoply of interrelations among all
the different stimuli in their environment—relationships that can be exposed through
clever experimental manipulations, as in the generalization tests central to acquired
equivalence, sensory preconditioning, and mediated aversion. These three examples
of mediated conditioning or learned generalization demonstrate the value of trying to
model animal learning as a network of chained predictions. This predictive promiscu-
ity, as captured by our PR model, helps animals learn and adapt more quickly when
confronted with novel situations and stimuli. No doubt the empirical story in each of
these cases is more nuanced than this brief exposition has allowed (for more details,
see [4,6]), but our model captures the core effects and offers a framework for thinking
about how the empirical exceptions might constrain future modeling attempts.
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